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The degree of supercooling (1T 0) dependence of lamellar thickening growth rate (U) of an
isolated extended chain single crystal (ECSC) of polyethylene is studied. The experimental
formula, U =C exp(−D/1T 0), where C = 130 nm/s and D= 20.0 K is obtained for the first
time. The formula is the same as that of lateral growth rate (V ). The reason why U and V
obey the same formula is well explained by a model named “sliding diffusion model of the
lamellar thickening growth”. The model proposed that the lamellar thickening growth is
controlled by both chain sliding diffusion within the ECSC and the nucleation on the side
surface. The observed fact that the U increases with increase of 1T 0 is opposite to the well
known fact that lamellar thickening rate W decreases with increase of 1T 0. This siginificant
difference was well explained by the difference between the “primary crystallization” and
the “secondary crystallization”, which is a kind of “Ostwald’s ripening process”. The origin
of the “tapered shape” is well explained by coupling of lamellar thickening and lateral
growths. C© 2000 Kluwer Academic Publishers

1. Introduction
In the previous paper which is named Part I [1] of the se-
ries of the “Thickening growth papers”, we have shown
that an isolated extended chain single crystal (ECSC)
of polyethylene (PE) is formed through two differ-
ent growth mechanisms, namely newly found lamel-
lar thickening growth and well known lateral growth
mechanisms [2, 3]. A crystal grows in two different di-
rections simultaneously; one is parallel and the other
is perpendicular to the chain axis, which correspond to
the lamellar thickening growth and the lateral growth,
respectively. We showed in the Part I paper that the
tapered shape seen on the cross section of an isolated
ECSC is a characteristic shape of a polymer single crys-
tal and that the tapered shape is evidence for the lamellar
thickening growth. It is shown that the lamellar thicken-
ing growth rate (U ) is obtained from the combination of
the mapping of the tapered shape and the lateral growth
rate (V), which we named the “mapping method” [1–3].

In the “mapping method”, the lamellar thickness of
an ECSC (l ) is observed (=“mapped”) as a function of
lateral distance (x) counted from the tip of the ECSC.

The x can be transformed to timet by applying the
relation,x=V t, which is a definition ofV . Thus theU
can be obtained using a relation,U = (dl/dt)/2, which
is definition ofU .

It is well known that crystallization is driven by the
free energy difference between isotropic and crystalline
phases. The driving force in the melt crystallization is
the free energy of fusion (1g) which is in proportion
to the degree of supercooling (1T0), i.e.,1g∝1T0.
Therefore it is important to obtain the1T dependence
of the growth rates in order to make clear the molecular
mechanism of the growth.

We have already shown thatV of an isolated ECSC
of PE obeys the well known formula,

V = Aexp

(
− B

1T0

)
(1)

where A and B are constants, from which it is con-
cluded that the lateral growth is mainly controlled by
the formation of two dimensional nuclei [4–6], while
the1T0 dependence of the lamellar thickening growth
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rate (U ) has not been obtained and the molecular mech-
anism has not been solved at all.

Fischeret al. and Geil showed that the long period
of the stacked lamellae (Lp) increases linearly against
logarithmic time (logt), from which the lamellar thick-
ening rate (W) was estimated using the definition,

W = dLp

d logt
(2)

Figure 1 Polarized optical micrographs of ECSCs crystallized atP= 0.4 GPa. Arrows show leaf-like or cigar shapes. (a)1T0= 3.1 K,
(b)1T0= 3.6 K, (c)1T0= 4.6 K, (d)1T0= 6.6 K, (e)1T0= 8.4 K and (f)1T0= 9.4 K. Scale bar= 50µm.

They showed that theW decreases with increase of
1T0 [7–9].

The purposes of this paper which we will name the
Part II paper is 1) to obtain the1T0 dependence ofU
of an ECSC,U =C exp(−D/1T0) will be shown, 2)
to explain why the1T0 dependence ofU shows the
same formula as that of lateral growth rateV , 3) to
explain whyU increases with increase of1T0, which
is just opposite to the well known fact that the lamel-
lar thickening rate of stacked lamellae decreases with
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Figure 2 Transmission electron micrographs showing the linear tapered cross section of an isolated ECSC crystallized atP= 0.4 GPa. ECSCs shown
in (a), (b), (c), (d), (e) and (f) correspond to those shown in (a), (b), (c), (d), (e) and (f) in Fig. 2. Scale bar= 1µm.
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increase of1T0, using the difference between “the pri-
mary crystallization” and the secondary crystallization
and 4) to explain the origin of the tapered shape of an
ECSC.

2. Experimental
Details of the materials and the experimental procedure
used have been given in the previous papers [1–3]. The
sample was crystallized at high pressure (P= 0.4 GPa)
and pressure-quenched at a stage of growth where
ECSCs were isolated with each other and then per-
manganic etched modifying Bassett’s method [10] to
make replicas. The replicas were observed by trans-
mission electron microscopy (TEM: JEOL LTD., JEM-
100CXII), from which the tapered shape and the lamel-
lar thickness (l ) of an isolated ECSC was observed. The
lamellar thickening rate (U ) were obtained from the
definition,U ≡ (1/2)(dl/dt) wheret is the time. TheU
was obtained by applying the “mapping method” which
is shown in Part I [1]. The range of equilibrium degree
of supercooling (1T0) in this study was 3.1–9.8 K.

3. Results
3.1. Morphology and lateral growth rate
Typical polarized optical micrographs of growing ex-
tended chain single crystals (ECSCs) crystallized at
different 1T0s (3.1–9.8 K) are shown in Fig. 1a–f.
Isolated ECSCs showed characteristic leaf like or
cigar shape, the same as reported by Hikosaka and
Seto atP= 0.3 GPa [4] or by Rastogiet al. at P=
0.25–0.4 GPa [6]. No difference was seen in morphol-
ogy in the present range of1T0, which indicates that
the growth mechanism does not change.

Typical transmission electron micrographs of ECSCs
crystallized at different1T0s are shown in Fig. 2a–f,
which correspond to the ECSCs indicated by arrows in
Fig. 1a–f, respectively. The linear tapered shape was
confirmed on all ECSCs, from which it is concluded
that the mapping method is applicable for all isolated
ECSCs. In the present range of1T0, little difference
was observed in morphology, except that the taper angle
(φobs) decreased with increase of1T0, which will be
shown in a later part of this paper.

The same1T0 dependence ofV as is given by
Equation1,V = Aexp(−B/1T0), was obtained, where
A= 3.2× 103 nm/s andB= 23.0 K, which will be
shown later in Fig. 6.

3.2. 1T 0 dependence of the lamellar
thickening growth rate

The lamellar thickening growth was confirmed from the
linear increase ofl with time t (Fig. 3). The lamellar
thickening growth rate (U ) was obtained from the slope
of the straight lines in Fig. 3. The parameter represented
in Fig. 3 indicates1T0. U showed some scatter as is
shown in Fig. 4 from which the standard deviation (σ )
was estimated.

Fig. 5 represents the plots of logU against the in-
verse of1T0. The error bar indicatesσ . The logU vs
(1T0)−1 gives a straight line. Thus we have an exper-

Figure 3 Lamellar thickness (̀) as a function of time (t) of an ECSC ob-
served at various1T0.1T0(h) indicates1T0 of the hexagonal crystals.

Figure 4 l againstt of ECSCs showing fluctuations from which average
of U and standard deviation were obtained.

imental formula of lamellar thickening growth rate for
the first time,

U =C exp

(
− D

1T0

)
(3a)

where

C = 130 nm/s and D= 20.0 K (3b)

It should be noted that the formula forU is the same
as that forV , i.e., Equation 1. The logU is compared
with log V in the same Fig. 6. This shows that logU is
nearly parallel to logV , which means thatD is nearly
equal toB, while the pre-factorC is 1/10 as large as
A, that is

U

V
= 1

10
(4)
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Figure 5 Logarithmic lamellar thickening growth rate (logU ) of EC-
SCs of PE crystallized atP= 0.4 GPa as a function of1T0−1. U =C
exp(−D/1T0) indicates the experimental formula,C= 1.3× 103 nm/s
andD= 20.0 K. Error bar shows the standard deviation (σ ).

Thus it is concluded that bothU andV show the same
exponential dependence on1T0. It is important to
study “why do they show the same exponential depen-
dence?” to solve the mechanism of lamellar thickening
growth.

3.3. 1T 0 dependence of the tapered shape
The tapered angle (φ) was observed on the cross section
of an ECSC.φobs is plotted against1T0 in Fig. 7.φobs
gradually decreased with increase of1T0. We have
shown that the tapered shape is formed by coupling
of the lamellar thickening growth and the conventional
lateral growth [1–3]. The theoretical one (φth.) given
in 4.3.3 of this paper is also shown by a smooth curve
in Fig. 7.φh. agreed well with theφobs., which will be
discussed in 4.3.3.

4. Discussion
4.1. Sliding diffusion model of the lamellar

thickening growth
It is interesting that the experimental formulae ofU and
V given by Equations 1 and 2, respectively are essen-
tially the same, as is shown in Fig. 6. The important
question is “why doU andV show the same exponen-
tial 1T0 dependence?”

It is well known in the classical nucleation theory
that the exponential1T0 dependence ofV (Equation 1)
suggests that the lateral growth is mainly controlled by
the nucleation process of the two dimensional nucleus

Figure 6 Comparison of logU with logarithmic lateral growth rate
(log V) of ECSC crystallized atP= 0.4 GPa as a function of1T0−1.
The upper horizontal axis indicates1T0(hex).

Figure 7 Observed taper angle (φobs.) as a function of1T0. Error bar
shows the standard deviation. The smooth curve is the theoretical taper
angle (φth.) calculated using Equation 22 in 4.3.3 of this paper.

on the side surface. It is well known that the nucleus
can be formed only on a smooth and flat substrate on
the atomic scale.

Does the same exponential1T0 dependence ofU
also suggest that the thickening growth is controlled
by two dimensional nucleation on the END surface?
The answer is “No”, because the end surface is a kind
of “fold surface”, so it cannot be flat but dynamically
uneven and rough [5], as is schematically illustrated
in Fig. 8. Fig. 8 shows the tapered cross section of an
ECSC with uneven and rough end surface and a smooth
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Figure 8 Sliding diffusion model of the lamellar thickening growth.
Cross section of an ECSC. The end surface is dynamically uneven and
rough [5], while the side surface is smooth and flat. Possible chain trans-
portation processes by “creeping in” through the end surface and that
through the nucleus on the side surface are shown. The transportation
requires “sliding diffusion” within the ECSC. Note that the “end” sur-
face is described by some authors as the “basal” surface : the use of this
term is avoided here because of possible confusion in the presence of the
taper.

side surface on which a two dimensional nucleus is
formed.

It is obvious that for the lamellar thickening growth,
new chains must be transported from the melt into an
ECSC. There are two possible processes of the trans-
portation of chains, as is shown in Fig. 8. One is trans-
portation by “creeping in” through the end surface and
the other is that through the nucleus formed on the side
surface. It is obvious that transported chains should
be rearranged by “sliding diffusion” within the ECSC
in both processes. Therefore we will propose a “slid-
ing diffusion model of the lamellar thickening growth”
where both the transportation processes are assumed to
be coupled in lamellar thickening growth. The model
insists that the lamellar thickening growth is controlled
by both chain sliding diffusion within the ECSC and
the nucleation on the side surface. The rate of the for-
mer is in proportion to exp(−1E/kT) where1E is an
activation free energy for chain sliding diffusion and
kT is thermal energy and that of the latter is roughly
in proportion to the lateral growth rateV . Thus we
have,

U ∝ exp

(
−1E

kT

)
V (5)

This model well explains the observed fact thatU
and V show the same exponential1T0 dependence.
The other observed fact thatU/V = 1/10 can be also
well explained by the factor of exp(−1E/kT). If
U = exp(−1E/kT) V is assumed, the1E= 2.3 kT
will be obtained for sliding diffusion within the hexag-
onal phase.

It is obvious that the ratio of folded chain crystals
(FC crystal) is much smaller than that of extended chain

Figure 9 Positive1T0 dependence ofU of ECSC and negative that of
the lamellar thickening rate (W) of FC crystal.

crystals (EC crystal), this means that

U

V
= 1/10 for EC crystal

(6)¿ 1 for FC crystal

4.2. Comparison with “lamellar thickening
growth” and lamellar thickening

It should be stressed that the positive1T0 dependence
of U is just opposite to the well known negative1T0

dependence of the lamellar thickening rate of stacked
lamellae (W) in annealing or isothermal crystalliza-
tion [7–9] as is schematically shown in Fig. 9. The sig-
nificant contrast suggests that the mechanisms are quite
different. It will be shown here that this can be explained
by the difference between “the primary crystallization”
of the former and “the secondary crystallization” of the
latter.

4.2.1. Onset of the lamellar stacking
An isolated ECSC (= single lamella) changes into
stacked lamellae after some time. The stacking is seen
more frequently with increase of1T0. The stacking is
one of overgrowth which leads to formation of various
superfine structures (textures).

Fig. 10a shows an isolated single crystal and Fig. 10b
shows onset of the lamellar stacking. The onset of
the lamellar stacking is considered to be related to
the generation of a screw dislocation, as has been
pointed out by Bassettet al. on FC single crystals [11].
After the onset of stacking, the number of stacked
lamellae increases with time (Fig. 10c) and finally the
sample is composed by fully stacked lamellae (Fig.
10d) which is commonly formed in semicrystalline
polymers. (Fig. 10d is an image of a fracture surface.)
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The lamellar thickening growth is defined on the iso-
lated ECSC (Fig. 10a), while the lamellar thickening is
defined on the stacked lamellae.

It should be noted that the shape of the cross sec-
tion of one lamella is quite different in between the
isolated lamellae and the stacked lamellae. The former
shows the tapered shape (Fig. 10a), whereas the lat-
ter is flat (Fig. 10c), i.e., the lamellar thickness (l ) is
nearly constant within a stacked lamella. At the on-
set of the lamellar stacking, thel within the stacked
lamellae shows a systematic change.l of the center
of the lamella which is formed at first (which we will
name “mother lamella”) is the thickest and thel of the
secondary or thirdly formed lamellae (which we will

Figure 10 Transmission electron micrographs showing (a) an isolated ECSC, (b) on set of lamellar stacking and (c) stacked lamellae atP= 0.4 GPa
and1T0= 6.0 K; (d) Fully stacked and partially healed lamellae atP= 0.5 GPa and1T0= 5.4 K. Scale bar= 5µm. (Continued)

name “daughter lamella” or “granddaughter lamella”)
becomes thinner and thinner.

It is also to be noted that a lamella at the onset of
lamellar stacking is flat at the center but tapered at its
front where the lamella is not yet stacked but still iso-
lated. This indicates thatl increases rapidly with time
at the front, butl changes slowly at the center, which is
schematically illustrates in Fig. 11. Combination of this
consideration with the observed facts on the isolated
ECSC by us and on the stacked FC crystal lamellae by
Fischeret al. [8] leads to the relations,

l = l ∗ + 2Ut for isolated ECSC (7)
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Figure 10 (Continued).

Figure 11 Linear increase ofl in thickening growth and logarithmic in-
crease ofl in lamellar thickening. The former corresponds to the “primary
crystallization” and the latter to the “secondary crystallization”.

and

l = lst+W log(t − c) for stacked lamellae (8)

wherelst. is l at t = tst., tst. is the onset time of stacking
andc is a constant.

4.2.2. Primary crystallization and
secondary crystallization

In the case of thickening growth of an isolated single
crystal within the melt, new chains can be sufficiently

supplied through the end and side surfaces (Fig. 12a),
hence it must be the primary crystallization. In the case
of thickening of stacked lamellae after complete solid-
ification, new chains cannot be supplied into an inside
lamella, because there remains no melt, so lamellae
have to “eat” each other by refolding [12] or chain slid-
ing (see Fig. 12b). Therefore thickening can be regarded
as a kind of “Ostwald’s ripening process”, hence it must
be the secondary crystallization.

4.2.3. Driving force of lamellar
thickening growth

The free energy of an isolated lamella (1G) schemati-
cally illustrated in Fig. 13 can be given by

1G ≡ −N1g+ 2a2σe+ 4alσ (9)

where N is the total number of repeating units,1g
is the free energy of fusion per one repeating unit (of
an infinite crystal),a is the number of stems at the
side surface,σe is the end surface free energy andσ
is side surface free energy, respectively. Here the end
surface corresponds to the “basal furface” of a lamellar
crystal. The1G will decrease with increase of size of
the lamella, i.e.,N, which is the essential reason why
lamellar thickening growth proceeds. This corresponds
to decrease of relative ratio of surface area to volume
of a single crystal with increase ofN. Therefore the
thermodynamic driving force (1 fiso) for the lamellar
thickening growth defined per one repeating unit can
be defined by

1 fiso≡ − ∂1G

∂N
= −1G

N
= −1g+ 2σe

l
+ 4σ

a
(10)
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(a)

(b)

Figure 12 Schematic illustration the cross section of an isolated lamella
and stacked lamellae showing the difference between (a) the “primary
crystallization” and (b) the “secondary crystallization”.

whereN=a2l is used. Equation 10 predicts that1 f
increases significantly with increase ofl which corre-
sponds to the early stage of thickening growth and that
1 f saturates to1g for largel (Fig. 14), i.e.,

lim
l→∞

1 fiso = 1g (11)

where a is assumed to be large as compared with
l . Therefore thickening growth will become steady
growth, i.e.,l increases linearly with timet , which well
explains the observed fact of the steady linear thicken-
ing growth of an ECSC.

The constant driving force predicts that there is no
final goal for lamellar thickening growth, which means
that an isolated lamella will be able to thicken steadily
without any limit. This is a kind of nature of “the pri-
mary crystallization”. It is usual that in an actual growth
process, accumulation of defects or strains will sup-
press the steady growth in due course and “the primary
crystallization” will be switched into “the secondary
crystallization” through the overgrowth mechanism.

4.2.4. Driving force of lamellar thickening
Lamellar thickening is a process of conversion from
thin stacked lamellae to thick ones. Some authors de-
scribe this as “stack lamellar thickening” to emphasize
the distinction from “lamellar thickening growth” as
dealt with above in 4.2.2. We have chosen to retain

Figure 13 Lamellar thickening growth of an isolated single lamella
within the melt from (a) a small one to (b) a giant one. Definition of
driving force of an isolated lamella (1 fiso.) is shown.

Figure 14 Driving force of an isolated lamella (1 fiso.) and that of
stacked lamellae (1 fst.) as a function ofl . 1 fiso. saturates to1g with
growth, which predicts steady thickening growth, while the1 fst. ap-
proaches zero, which predicts stoppage of thickening.

“lamellar thickening” for the process described here.
Theoretically speaking, the final goal of the lamellar
thickening is conversion into a single lamella. Fig. 15
shows how the stacked lamellae (within vacuum or air,
not within the melt) convert ultimately into an ideal
single lamella, which is secondary crystallization and
a kind of “Ostwald’s ripening”. In the Fig. 15,W is the
rate of lamellar thickening,l is the lamellar thickness
of each lamella andξ is the number of lamellae within
the stack. The free energy of all the stacked lamella1G
of Fig. 15a is given by

1G(ξ ) = −N1g+ 2a2ξσe+ 4aLσ (12)

whereL is the vertical size of the stacked crystal along
chain axis which is given byL = ξ l . ξ decreases with
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Figure 15 Lamellar thickening from (a) stacked lamellae into (b) the
final stage of a single lamella. Definition of driving force of lamellar
thickening (1 fst.) is shown.

lamellar thickening, i.e., with increase ofl . Finally ξ
reachesξ = 1 at the completion of lamellar thickening.
So the free energy of the ideal single lamella (Fig. 15b)
can be expressed as

1G(1)=−N1g+ 2a2σe+ 4aLσ (13)

The driving force for lamellar thickening per repeating
unit (1 fst) can be defined by

1 fst ≡ −{1G(1)−1G(ξ )}
N

(14)

Insertion of Equations 12 and 13 into Equation 14 gives

1 fst(l ) = 2σe

(
1

l
− 1

L

)
(15)

whereN=a2lξ is used.1 fst(l ) is schematically illus-
trated as a function ofl in Fig. 14.1 fst(l ) is signifi-
cantly large at the early stage of lamellar thickening,
i.e., for thin lamellae,1 fst(l ) decreases with increase
of l and finally1 fst(l ) reaches zero at the completion
of lamellar thickening. The1 fst(l ) for the initial and

final stages of lamellar thickening can be obtained from
Equation 15,

1 fst(l ) = 1g− 2σe

L
for l = l ∗ (initial stage, i.e.,

critical nucleus)

0 for l = L (final stage)
(16)

This theoretical result well explains the well known ob-
served fact that lamellar thickness of stacked lamellae
increases linearly with logarithmic time [7–9].

4.3. Origin of the tapered shape
As is mentioned in the Introduction, the tapered shape
seen on the cross section of an isolated ECSC is charac-
teristic of a polymer single crystal and that the tapered
shape is evidence for lamellar thickening growth. Here
the origin of the tapered shape will be clarified.

4.3.1. Atomic or low molecular weight
system does not show tapered shape

It is well known that a single crystal of atomic or low
molecular weight system (such as metal orn-alkane)
generally grows into a three dimensional shape and
shows a typical crystal habit, when the growth is con-
trolled by the two dimensional nucleation process. This
means a single crystal is surrounded by flat crystallo-
graphic lattice planes and does not show any tapered
shape.

Fig. 16 shows a schematic cross section of atomic
or low molecular weight molecular crystal. If we as-
sume cubic lattice for simplicity, the crystal shape is a
cube (Fig. 16a) and there is no difference between the
side surface and the end surface. In the case of two di-
mensional nucleation controlled growth, both surfaces
should be smooth and flat. When a two dimensional
nucleus is nucleated and sweeps on the side surface, a
new layer will be formed on the side surface (Fig. 16a
and b). Similarly when another two dimensional nu-
cleus is nucleated and sweeps on the end surface, a new
layer will be formed on the end surface. (Fig. 16b and
c). After these steps the crystal shape will become cu-
bic again. Further iteration will always gives a cubic
shaped crystal.

4.3.2. Why does polymer show
tapered shape?

Let us start from a critical primary nucleus, i.e., three
dimensional nucleus (Fig. 17a).l ∗ andn∗ are lamellar
thickness and the number of stem of the critical primary
nucleus, respectively. We have already shown that the
lateral growth is controlled by nucleation of a two di-
mensional nucleus, which indicates that the side sur-
face must be flat and smooth at the atomic or molecular
scale.

In the case of the end surface, on the other hand,
it must be rough on the atomic scale, irrespective of
whether the crystal is orthorhombic or hexagonal. It is
well known that the end surface of the orthorhombic
folded chain crystal has many folds and cilia [1]. We
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Figure 16 Growth of atomic or low molecular weight system (a and b)
through surface nucleation and sweep of the nuclei; (c) The rectangular
shape is always reproduced and does not change with growth.

have already showed that the end surface of the hexag-
onal crystals of PE must be dynamically rough and un-
even. We showed that the end surface free energy (σe)
of the hexagonal crystals of PE is only 6.3× 103 J m−2,
which is much less than that of orthorhombic crystals
of PE. We showed theoretically that this smallσe can be
explained by the high entropy of the folded end surface
which is caused by violent fluctuation of the position of
the fold or cilia on the end surface. Therefore the end
surface cannot be flat and smooth, so there cannot be
any two dimensional nucleus on the end surface.

Fig. 17b illustrates an elementary process, forming
a new end surface and side surface within some short
time. On the new side surface, a new nucleus will be
formed and the nucleus will sweep (=move) across the
side surface and another new side surface will be formed
again and again, whereas the new end surface cannot
be swept by any nucleus. That is, the step A shown
by an arrow in the Fig. 17b cannot sweep on the new
end surface, which is an essential difference between a
polymer chain system and an atomic or low molecular
system. The prohibition is caused by the topological
nature of the chains which forbid any nucleation on the
end surface.

The new end surface only can go forward and the
lamellar thickens only by chain sliding diffusion along
the chain axis as has been discussed by chain sliding
diffusion theory by one of the authors (M.H) [13, 14].

Therefore it is considered that the number of stem (n)
increases with the lateral growth rateV by nucleation
and growth of the two dimensional nucleus, while the
l increases withU by chain sliding diffusion along its

Figure 17 Origin of the “tapered shape” of polymer system. (a) Primary
nucleus with rectangular shape, (b) thickening and lateral growth. The
sweep of step is topologically forbidden, so the sweep rate (T) is zero
and (c) iteration of (b) results in the tapered shape.

chain axis (see Fig. 17b). Iteration of this elementary
process leads to formation of the tapered shape illus-
trated in Fig. 17c. Therefore it is concluded that the
rough and uneven end surface caused by the topolog-
ical nature of the chain system is the essential reason
for formation of the tapered shape.

4.3.3. Formulation of the tapered shape
Fig. 18 shows an illustration of the cross section of
a crystal. We will start from a crystal (BOA). Thex
andy axes and the origin O are defined in the Figure.
The end and side surfaces (OB and OA, respectively)
go forward with the ratesU andV , respectively. The
crystal thickens due to chain sliding diffusion. TheV is
controlled by nucleation process of the two dimensional
nucleus.

Figure 18 Formulation of the tapered shape. Trajectory ofP(x, y) is
formulated which represents the tapered shape. See text.
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Assume that after a very small (infinitesimal) time
interval (1t), the side surface OA advances to CA′ and
the end surface OB advances to DB′. This meansx of
the pointC(x, 0) is given by

x = V1t (17)

After some time (t), they advances further to EA′′ and
FB′′, respectively. Within1t , new small end and side
surfaces (OC and OD, respectively) are formed. In this
model, the new end surface OC can thicken, while the
advance of the new side surface OD is forbidden (that
means the normal growth rate (denotedT) is equal to
zero, i.e.,T = 0, as is discussed in references [1, 2, 5].
So after some timet , the thickness atx will increase by
y which is given by

y = U (t −1t) (18)

Thus the pointP(x, y) can be described by,

P(x, y)= (V1t,U (t −1t)) (19)

The shape of the crystal can be formulated by the trajec-
tory of the pointP(x, y). The equation of the trajectory
can be given by combining Equations 17 and 18

y = Ut −
(

U

V

)
x (20)

Equation 20 gives a straight line, passing through the
points E and F , which represents the linear tapered
shape of the single crystal.

Therefore we have a relation,

tan

(
φ

2

)
' U

V
(21)

For the usual caseφ is roughly equal to several or ten
degrees, so the Equation 21 is approximated to

φ ' 2U

V
(22)

φth. calculated from Equation 22 usingV andU given
by Equation 1 and 3 is shown as a function of1T0

in Fig. 7 which well explains the observed1T0 de-
pendence ofφobs. Thus it is concluded that the tapered
shape is determined by the ratio ofU to V .

5. Conclusion
1. The experimental formula of the1T0 dependence
of the lamellar thickening growth rateU of an iso-

lated extended chain single crystal of PE is ob-
tained for the first time,U =C exp(−D/1T0), where
C= 1.3× 102 nm/s andD= 20.0 K.

2. A “Sliding diffusion model of the lamellar thicken-
ing growth” is proposed: the lamellar thickening growth
is controlled by both chain sliding diffusion within the
ECSC and the nucleation on the side surface. The pre-
dicted relation,U ∝ exp(−1E/kT)V , where1E is
activation free energy for sliding diffusion, well ex-
plained the observed fact thatU and lateral growth rate
V show the same exponential1T0 dependence.

3. The positive1T0 dependence of the lamellar
thickening growth rateU is opposite to negative that
of lamellar thickening rateW. This difference was well
explained by associating the former with “primary crys-
tallization” and the latter with “secondary crystalliza-
tion”, i.e., a kind of “Ostwald’s ripening process”.

4. The origin of the tapered shape is well explained
by coupling of lamellar thickening and lateral growths.
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